Au début des années 80, un étudiant de Khorana, Marvin Caruthers, a introduit des réactifs plus efficaces, les phosphoramidites, et a ainsi révolutionné la synthèse de l’ADN. Cette synthèse comprend quatre étapes et aboutit à l’addition d’un seul nucléotide au brin d’ADN, qui croît en étant fixé à un support solide (du verre ou du polystyrène par exemple). Cette méthode a été encore améliorée grâce à différents supports, puis automatisée, ce qui a permis de réduire le temps de synthèse.

Comment fabrique-t-on aujourd’hui de l’ADN ?

Aujourd’hui, de nombreuses versions modifiées des phosphoramidites ont vu le jour, avec des propriétés optimisées pour des synthèses d’ADN spécifiques.

La chimie des phosphoramidites reste la méthode de référence pour la fabrication d’ADN, utilisée dans l’industrie depuis près de 40 ans avec une efficacité aujourd’hui supérieure à 99 % et une rapidité de synthèse de quelques minutes. Sa simplicité et sa haute efficacité permettent de synthétiser de grandes longueurs de séquences, jusqu’à 200 paires de bases, dont l’assemblage aboutit à la construction d’ADN encore plus grands, pour produire des gènes simples jusqu’à des génomes synthétiques entiers, tel que le génome de la levure de boulanger, Saccharomyces cerevisiae.

“Les capacités de synthèse de l’ADN disponibles aujourd’hui ont pris beaucoup de retard par rapport aux progrès réalisés dans le domaine du séquençage de l’ADN”

Si la chimie des phosphoramidites résiste à l’épreuve du temps, elle a des limites techniques. Par exemple, des erreurs peuvent se produire lors de synthèses successives résultant de réactions secondaires, comme des couplages incomplets, quand la liaison entre nucléotides complémentaires ne se produit pas, ou des incorporations erronées, par exemple un G au lieu d’un A.

Fabriquer de l’ADN, demain

Nous devons être conscients que les capacités de synthèse de l’ADN disponibles aujourd’hui ont pris beaucoup de retard par rapport aux progrès réalisés dans le domaine du séquençage de l’ADN. Les technologies actuelles de fabrication de l’ADN ne sont pas suffisamment mûres pour permettre l’ingénierie pratique et économique de génomes de grande taille.

Des efforts interdisciplinaires continus sont déployés pour utiliser de nouvelles chimies et stratégies pour synthétiser de l’ADN et assembler des gènes. De nouvelles stratégies inspirées des systèmes biologiques émergent mais pour l’instant, aucune technologie ne permet d’accéder à des séquences aussi grandes que celles trouvées dans la nature.

Les défis techniques actuels concernent l’assemblage de régions de la chaîne d’ADN qui sont hautement répétitives ou complexes. Quand ces verrous techniques seront surmontés, avec des stratégies de synthèse plus optimales, de nouvelles perspectives s’ouvriront pour résoudre les défis majeurs auxquels nous sommes confrontés en matière de ressources, d’énergie, de santé et d’environnement.